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We present an improvement to the previously given [1] method of solving cer~
tain problems with a moving boundary, We shall investigate an unsteady heat
transfer in a semi-infinite region with a moving boundary at a specified tem-
perature and zero initial conditions,

Using a coordinate system attached to the moving boundary, we describe the process
in the form of the following problem:
i i 0
[W—Tax—,-u(t)-gz-]Tzo, 0z o0, O<Ci<C

Tl =Tot)y Tleu=0 T],=0

where u is the velocity of the moving boundary. The only quantity to be determined is
the temperature gradient at the boundary of the region g = (9T / dz),_
In contrast to {1] we make the substitution

t
1
T:Oexpg—zu’dt @)
0

We now obtain the following problem for 0

0 o 0 2 (t
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(2)

Equation (2) can be written in the form [2]
a 0
(M—a—z)(L+a—,)e=o )
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PREOTD < s-m/2
M= 2 b () — T ngo ) — T (4)
a’f (1) 1 a ¢ -y
. = Ta—W ng(t)(t——-r) dr, —oolv<1 (5)
0

It was shown before [1, 2] that instead of Eq. (2), we can consider an equation formed
by the right-hand side factor of the operator in (3)

(2 +2)0=0 )

all solutions of which satisfy automatically the condition at infinity. Rewriting (6) for
z = 0 we obtain the expression which yields a solution to the problem in question
— (00/ 92),_o= LBo (2) N

The function 6 satisfies (6) and (2) simultaneously, therefore differentiating (6) with
respect to z and eliminating 46 / dz and 9% / 2% from (2) we obtain an equation deter-
mining the operator L

8 He ope (L2 — u (O + Yt (910 = 90 / 01 ®
Let us substitute into this equation L from (4) and transform the expressions in such a
manner, that they will act only on the function to be determined. Equating the factors
accompanying the similar derivatives, we obtain

’ L4

u
a0 =1, o=, az =0, asz—-l;—, a =0, a=;‘— (9)
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...............................

The expression sought for ¢, (t) is now given by the formulas (7),(1),(4) and (9), and it
is much simpler than that obtained in the vemion given in [1], When u = const , the
series in (4) and (7) contains just two terms
— qo (£) = exp (——1- uzt) (—ﬂ + = ) exp ( 1 u2t> To (t)
4 di'h 2
Let us consider in detail the case u = at- B (o and § are constants) which was inves-
tigated before by the method of separation of variables [3]., Equation (8) is satisfied by

the operator hod 1/,
_ 1 g'lhn
L=— (st +B) +§0 cpa™ — ¢p — const (10)
whete @ e — Y cpes — 57128, cp —15/512, ¢y =—1105/218  (11)

c5 = — 1695/ 215, ¢g = — 414125/ 222, ;7 == — 59025/ 218
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$~1
3
2c$ = -—[1 -TS] Cpq — 2 €8y e s>1
n=y

We note that all ¢,, » > 1 are negative.

Let us establish the convergence of the series (4) for the present example, From (11)
we find by induction that c,c, , > €5 46, 5y if n > s — n. Therefore replacing each
term in the sum by the maximum value of ¢, ¢, = —¢;,/ 8, we obtain

el <es|e, | (12)
Using the mean value theorem we can obtain from (5) the following estimate:

v,

S | ST = sup8],  v<O (13)

Substitution of (12) and (13) into (4) yields a majorizing series the general term of which
has the form

(16)" T (n) T [3/3(n 4 1)] £O™+1 /2
and from this the convergence of (4) follows,

Using (12), (13) and the properties of the gamma-function, we can obtain an estimate
for the error, provided that in the series (10) all terms up to » = N are preserved, For
a nondecreasing 0, () the quantity (—a8 /az),_, > 0 exceeds the exact value by the
quantity § > 0, and

8 < |cy | sup 8- (7n'/r/ 8)2N3-NAFIP-1 (W)

T [y (N4 DIT2 3y (N + 1)+ 2T (s (N 1)+ Y] T2 (Ha (N 4 1)+ ¥4l

T [y (N4 &)+ YeIT-2 [y (N 4 1) + YIT [Yy (N + )+ AP P, (N +-
1)+ /4]

N2 N+2 N3\ 7 /t\h 4918
[ro (F2) v (F32) s (52 - (3) Jeor o rrem 575
At small z the formula (7) is more suitable for computations than the formulas given

in [8].
If the function u is specified in the form of a series in exponential functions

-
U= 2 B,e ™, a, B= const
n=p

then the operator L can be found from (8) in the form of an expansion suitable for com-
putations at large ¢

t
s
L= emp, pa:_b%_/:., Pna(t)::gKn(t—‘t)e(’t)dt, n>9
1]

n=g
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