REFERENCES

1. Cherkesov, L. V., Surface and Internal Waves. Kiev, "Naukova Dumka",1973.
2. Vitiuk, V.F., Waves generated by perturbations of the bottom of a tank with a dock. PMM Vol. 36, № 4, 1972.
3. Stocker, J.J., Water Waves. The Mathematical Theory with Applications.
N. Y. , Interscience, 1957.

Translated by L. K.

UDC 536. 2.01: 517. 9

hieat transfer into a semir-nfinite region with a boundary moving ACCORDING TO AN ARBITRARY LAW

PMM Vol. 39, № 6, 1975, pp. 1143-1145
IU.I. BABENKO
(Leningrad)
(Received December 24, 1973)
We present an improvement to the previously given [1] method of solving certain problems with a moving boundary. We shall investigate an unsteady heat transfer in a semi-infinite region with a moving boundary at a specified temperature and zero initial conditions.

Using a coordinate system attached to the moving boundary, we describe the process in the form of the following problem:

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}-u(t) \frac{\partial}{\partial x}\right] T=0, \quad 0 \leqslant x \leqslant \infty, \quad 0<t<\infty} \\
& \left.T\right|_{x=0}=T_{0}(t),\left.\quad T\right|_{x=\infty}=0,\left.\quad T\right|_{t=0}=0
\end{aligned}
$$

where u is the velocity of the moving boundary. The only quantity to be determined is the temperature gradient at the boundary of the region $q_{0}=(\partial T / d x)_{x=0}$.

In contrast to [1] we make the substitution

$$
\begin{equation*}
T=\theta \exp \int_{0}^{t} \frac{1}{4} u^{2} d t \tag{1}
\end{equation*}
$$

We now obtain the following problem for θ :

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}-u(t) \frac{\partial}{\partial x}-\frac{u^{2}(t)}{4}\right] \theta=0, \quad 0 \leqslant x<\infty, \quad 0<t<\infty} \\
& \left.\theta\right|_{x-0}=\theta_{0}=T_{0} \exp \int_{0}^{t} \frac{1}{4} u^{2} d t \tag{2}
\end{align*}
$$

Equation (2) can be written in the form [2]

$$
\begin{equation*}
\left(M-\frac{\partial}{\partial x}\right)\left(L+\frac{\partial}{\partial x}\right) \theta=0 \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& M=\sum_{m=0}^{\infty} b_{m}(t) \frac{\partial^{(1-m) / 2}}{\partial t^{(1-m) / 2}}, \quad L=\sum_{n=0}^{\infty} a_{n}(t) \frac{\partial^{(1-n) / 2}}{\partial t^{(1-n) / 2}} \tag{4}\\
& \frac{d^{\nu} f(t)}{d t^{\nu}}=\frac{1}{\Gamma(1-v)} \frac{d}{d t} \int_{0}^{t} f(\tau)(t-\tau)^{-v} d \tau, \quad-\infty<v<1 \tag{5}
\end{align*}
$$

It was shown before [1,2] that instead of Eq. (2), we can consider an equation formed by the right-hand side factor of the operator in (3)

$$
\begin{equation*}
\left(L+\frac{\partial}{\partial x}\right) \theta=0 \tag{6}
\end{equation*}
$$

all solutions of which satisfy automatically the condition at infinity. Rewriting (6) for $x=0$ we obtain the expression which yields a solution to the problem in question

$$
\begin{equation*}
-(\partial \theta / \partial x)_{x=0}=L \theta_{0}(t) \tag{7}
\end{equation*}
$$

The function θ satisfies (6) and (2) simultaneously, therefore differentiating (6) with respect to x and eliminating $\partial \theta / \partial x$ and $\partial^{2} \theta / \partial x^{2}$ from (2) we obtain an equation determining the operator L

$$
\begin{equation*}
\left[L^{2}-u(t) L+1 / 4 u^{2}(t)\right] \theta=\partial \theta / \partial t \tag{8}
\end{equation*}
$$

Let us substitute into this equation L from (4) and transform the expressions in such a manner, that they will act only on the function to be determined. Equating the factors accompanying the similar derivatives, we obtain

$$
\begin{aligned}
& a_{0}=1, \quad a_{1}=\frac{u}{2}, \quad a_{2}=0, \quad a_{3}=-\frac{u^{\prime}}{8}, \quad a_{4}=0, \quad a_{5}=\frac{u^{\prime \prime}}{16} \\
& a_{8}=-\frac{5}{128} u^{\prime 2}, \quad a_{7}=-\frac{5}{128} u^{\prime \prime \prime}, \quad a_{8}=\frac{25}{512} u^{\prime} u^{\prime \prime}, \quad a_{9}=\frac{7}{256} u^{\mathrm{IV}}- \\
& \frac{15}{512} u^{\prime 3}, \quad a_{10}=-\frac{109}{1024} u^{\prime} u^{\prime \prime \prime}-\frac{13}{256} u^{\prime \prime 2}, \quad a_{11}=\frac{175}{1024} u^{\prime 2} u^{\prime \prime}-\frac{21}{1024} u^{\mathrm{V}} \\
& a_{12}=-\frac{1105}{2^{15}} u^{\prime 4}+\frac{1757}{2^{13}} u^{\prime \prime} u^{\prime \prime \prime}+\frac{887}{2^{19}} u^{\prime} u^{\mathrm{IV}} \\
& \sum_{m=0}^{m+2 r \leqslant s+1} \sum_{r=0}^{2}\left(\frac{1-m}{2}\right) a_{m} a_{s+1-m-2 r}^{(r)}-u a_{s}=0, \quad s \geqslant 0
\end{aligned}
$$

The expression sought for $q_{0}(t)$ is now given by the formulas (7), (1), (4) and (9), and it is much simpler than that obtained in the version given in [1]. When $u=$ const, the series in (4) and (7) contains just two terms

$$
-q_{0}(t)=\exp \left(-\frac{1}{4} u^{2} t\right)\left(\frac{d^{1 / 2}}{d t^{1 / 2}}+\frac{u}{2}\right) \exp \left(\frac{1}{4} u^{2 t}\right) T_{0}(t)
$$

Let us consider in detail the case $u=\alpha t+\beta$ (α and β are constants) which was investigated before by the method of separation of variables [3]. Equation (8) is satisfied by the operator

$$
\begin{equation*}
L=\frac{1}{2}(\alpha t+\beta)+\sum_{n=0}^{\infty} c_{n} \alpha^{n} \frac{\partial^{1 / 2-3 / 2 n}}{\partial t^{1 / 2-3 / 2 n}}, \quad c_{n}-\mathrm{const} \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
& c_{0}=1, \quad c_{1}=-1 / 8, \quad c_{2}=-5 / 128, \quad c_{3}=-15 / 512, \quad c_{1}=-1105 / 2^{15} \tag{11}\\
& c_{5}=-1695 / 2^{15}, \quad c_{6}=-414125 / 2^{22}, \quad c_{7}=-59025 / 2^{18}
\end{align*}
$$

$$
2 c_{s}=-\left[1-\frac{3}{4} s\right] c_{s-1}-\sum_{n=1}^{s-1} c_{n} c_{s-n}, \quad s \geqslant 1
$$

We note that all $c_{n}, n \geqslant 1$ are negative.
Let us establish the convergence of the series (4) for the present example, From (11) we find by induction that $c_{n} c_{s-n}>c_{n-1} c_{s-n+1}$ if $n>s-n$. Therefore replacing each term in the sum by the maximum value of $c_{s-1} c_{1}=-c_{s-1} / 8$, we obtain

$$
\begin{equation*}
\left|c_{s}\right|<\eta / 16 s\left|c_{s-1}\right| \tag{12}
\end{equation*}
$$

Using the mean value theorem we can obtain from (5) the following estimate:

$$
\begin{equation*}
\left|\frac{\partial^{v} \theta}{\partial t^{t}}\right| \leqslant \Gamma^{-1}(1-v) t^{v} \sup |\theta|, \quad v<0 \tag{13}
\end{equation*}
$$

Substitution of (12) and (13) into (4) yields a majorizing series the general term of which has the form

$$
(7 / 18)^{n} \Gamma(n) \Gamma^{-1}\left[{ }^{3} / 2(n+1)\right] t^{(3 n+1) / 2}
$$

and from this the convergence of (4) follows.
Using (12), (13) and the properties of the gamma-function, we can obtain an estimate for the error, provided that in the series (10) all terms up to $n=N$ are preserved. For a nondecreasing $\theta_{0}(t)$ the quantity $(-\partial \theta / \partial x)_{x=0}>0$ exceeds the exact value by the quantity $\delta>0$, and

$$
\begin{aligned}
& 8<\left|c_{N}\right| \sup \theta_{0} \cdot\left(7 \pi^{1 / 2} / 8\right) 2^{N} 3^{-(3 N / 3)-2} \Gamma^{-1}(N) \\
& \Gamma\left[{ }^{3} / 2(N+1)\right] \Gamma^{-1}[3 / 2(N+1)+1 / 2] \Gamma[1 / 2(N+1)+1 / 2] \Gamma^{-1}[1 / 2(N+1)+2 / 3 \mid \\
& \Gamma[1 / 2(N+1)+1 / 3] \Gamma^{-1}[1 / 2(N+1)+1 / 3] \Gamma[1 / 2(N+1)+1] \Gamma^{-1}[1 / 2(N+ \\
& 1)+7 / 6] \\
& {\left[\Gamma^{-1}\left(\frac{N+2}{2}\right)+\Gamma\left(\frac{N+2}{2}\right) \Gamma^{-1}\left(\frac{N+3}{2}\right) \cdot \frac{7}{8}\left(\frac{t}{3}\right)^{1 / 2}\right] t^{(3 N+4) / 2} \exp \frac{49 t^{2}}{576}}
\end{aligned}
$$

At small t the formula (7) is more suitable for computations than the formulas given in [3].

If the function u is specified in the form of a series in exponential functions

$$
u=\sum_{n=0}^{\infty} \beta_{n} e^{-n \alpha t}, \quad \alpha, \beta=\mathrm{const}
$$

then the operator L can be found from (8) in the form of an expansion suitable for computations at large t

$$
L=\sum_{n=0}^{\infty} e^{-n \alpha i} P_{n} . \quad P_{0}=\frac{\partial^{1 / 2}}{\partial t^{1 / 2}}, \quad P_{n} \theta(t):=\int_{0}^{t} K_{n}(t-\tau) \theta(\tau) d \tau, \quad n>0
$$

REFERENCES

1. Babenko,Iu.I., Certain problems frequently encountered in the theory of unsteady combustion. In the book; Combustion and Explosion. Moscow, "Nauka", 1972.
2. Babenko, Iu. I., Use of fractional differentiation in the problems of the theory of heat transfer. In the book: Heat and Mass Transfer. Vol. 8, Minsk, 1972.
3. Grinberg, G. A., On the temperature or concentration fields produced inside an infinite or finite domain by moving surfaces at which the temperature or concentration are given as functions of time. PMM Vol. 33, № $6,1969$.
